首页> 外文期刊>Knowledge-Based Systems >CTS-LSTM: LSTM-based neural networks for correlated time series prediction
【24h】

CTS-LSTM: LSTM-based neural networks for correlated time series prediction

机译:CTS-LSTM:基于LSTM的神经网络,用于相关时间序列预测

获取原文
获取原文并翻译 | 示例

摘要

Correlated time series refer to multiple time series which are recorded simultaneously to monitor the changing of multiple observations in a whole system. Correlated time series prediction plays a significant role in many real-world applications to help people make reasonable decisions. Yet it is very challenging, because different from single time series, correlated time series show both intra-sequence temporal dependencies and inter-sequence spatial dependencies. In addition, correlated time series are also affected by external factors in actual scenarios. Although RNNs have been proved to be effective on sequential data modeling, existing related works only focus on sequential patterns in a single time series, failing to comprehensively consider the inter-dependencies among multiple time series, which is essential for correlated time series prediction. In this paper, we propose a novel variant of LSTM, named CTS-LSTM, to collectively forecast correlated time series. Specifically, spatial and temporal correlations are explicitly modeled and respectively maintained in cells to capture the complex non-linear patterns in correlated time series. A general interface for handling external factors is further designed to enhance forecasting performance of the model. Experiments are conducted on two types of real-world datasets, viz., civil aviation passenger demand data and air quality data. And our CTS-LSTM achieves at least 9.0%, 16.5% and 21.3% lower RMSE, MAE and MAPE compared to the state-of-the-art baselines. (C) 2019 Elsevier B.V. All rights reserved.
机译:相关时间序列是指同时记录以监视整个系统中多个观测值的变化的多个时间序列。相关时间序列预测在许多实际应用中可发挥重要作用,以帮助人们做出合理的决策。然而,这是非常具有挑战性的,因为与单个时间序列不同,相关时间序列同时显示序列内时间相关性和序列间空间相关性。另外,在实际情况下,相关的时间序列也会受到外部因素的影响。尽管已证明RNN对顺序数据建模有效,但现有的相关工作仅关注单个时间序列中的顺序模式,未能全面考虑多个时间序列之间的相互依赖性,这对于相关的时间序列预测至关重要。在本文中,我们提出了一种LSTM的新变种,称为CTS-LSTM,以集体预测相关的时间序列。具体地,空间和时间相关性被明确地建模并分别保持在单元中,以捕获相关时间序列中的复杂非线性模式。进一步设计了用于处理外部因素的通用界面,以增强模型的预测性能。实验是在两种类型的现实世界数据集上进行的,即民航旅客需求数据和空气质量数据。与最新的基准相比,我们的CTS-LSTM的RMSE,MAE和MAPE分别降低了至少9.0%,16.5%和21.3%。 (C)2019 Elsevier B.V.保留所有权利。

著录项

  • 来源
    《Knowledge-Based Systems》 |2020年第5期|133-142|共10页
  • 作者

  • 作者单位

    Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Peoples R China|Beijing Key Lab Traff Data Anal & Min Beijing Peoples R China|CAAC Key Lab Intelligent Passenger Serv Civil Avi Beijing Peoples R China;

    Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Peoples R China|Beijing Key Lab Traff Data Anal & Min Beijing Peoples R China;

    Beijing Jiaotong Univ Sch Comp & Informat Technol Beijing Peoples R China|CAAC Key Lab Intelligent Passenger Serv Civil Avi Beijing Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Correlated time series prediction; Spatio-temporal correlation;

    机译:相关时间序列预测;时空相关;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号