首页> 外文期刊>Neural processing letters >Automatic Semantic Segmentation with DeepLab Dilated Learning Network for Change Detection in Remote Sensing Images
【24h】

Automatic Semantic Segmentation with DeepLab Dilated Learning Network for Change Detection in Remote Sensing Images

机译:用DEEPLAB扩张学习网络进行自动语义分割,用于在遥感图像中改变检测

获取原文
获取原文并翻译 | 示例

摘要

Automatic change detection is an interesting research area in remote sensing (RS) technology aims to detect the changes in synthetic aperture radar (SAR) and multi-temporal hyperspectral images acquired at different time intervals. This method identifies the differences between the images and accomplishes the classification result into changed and unchanged areas. However, the existing algorithms are degraded due to noises present in the RS images. The main aim of the proposed method is the automatic semantic segmentation based change detection that produces a final change between the two input images. This paper proposes a feature learning method named deep lab dilated convolutional neural network (DL-DCNN) for the detection of changes from the images. The proposed approach consists of three stages: (ⅰ) pre-processing, (ⅱ) semantic segmentation based change detection and (ⅲ) accuracy assessment. Initially, preprocessing is performed to correct the errors and to obtain detailed information from the scene. Then, map the changes between the two images with the help of a trained network. The DCNN network performs fine-tuning and determines the relationship between two images as changed and unchanged pixel areas. The experimental analysis conducted on various datasets and compared with several existing algorithms. The experimental analysis is performed in terms of F-score, percentage correct classification, kappa coefficient, and overall error rate measures to show a better performance measure than the other state-of-art approaches.
机译:自动变化检测是遥感(RS)技术中有趣的研究区域,旨在检测以不同时间间隔获取的合成孔径雷达(SAR)和多时间超光谱图像的变化。此方法识别图像之间的差异,并完成分类结果进入更改和不变区域。然而,由于在RS图像中存在的噪声,现有算法劣化。所提出的方法的主要目的是基于自动的语义分割的变化检测,它在两个输入图像之间产生最终变化。本文提出了一种特征学习方法,名为Deep Lab扩张的卷积神经网络(DL-DCNN),用于检测图像的变化。所提出的方法包括三个阶段:(Ⅰ)预处理,(Ⅱ)基于语义分割的变化检测和(Ⅲ)准确性评估。最初,执行预处理以纠正错误并从场景获取详细信息。然后,在训练网络的帮助下映射两个图像之间的变化。 DCNN网络执行微调,并确定两个图像之间的关系,例如改变和不变的像素区域。在各种数据集上进行的实验分析,与几种现有算法相比。实验分析在F分数,百分比正确的分类,κ系数和整体错误率措施方面进行,以显示比其他最先进的方法更好的性能测量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号