首页> 外文期刊>Neural processing letters >DropFilterR: A Novel Regularization Method for Learning Convolutional Neural Networks
【24h】

DropFilterR: A Novel Regularization Method for Learning Convolutional Neural Networks

机译:DropFilterr:一种学习卷积神经网络的新规则化方法

获取原文
获取原文并翻译 | 示例

摘要

The past few years have witnessed the fast development of regularization methods for deep learning models such as fully-connected deep neural networks (DNNs) and convolutional neural networks (CNNs). Part of previous methods mainly consider to drop features from input data and hidden layers, such as Dropout, Cutout and DropBlocks. DropConnect select to drop connections between fully-connected layers. By randomly discard some features or connections, the above mentioned methods relieve the overfitting problem and improve the performance of neural networks. In this paper, we proposed a novel regularization methods, namely DropFilterR, for the learning of CNNs. The basic idea of DropFilterR is to relax the rule of weight-sharing in CNNs by randomly drop elements in convolution filters. Specifically, we drop different elements in convolution filters along with their moving on input feature maps. Moreover, we may apply random drop rate to further increase the randomness of the proposed method. Also, we find a suitable way to accelerate the computation for DropFilterR based on theoretical analysis. Experimental results on several widely-used image databases such as MNIST, CIFAR-10 and Pascal VOC 2012 show that using DropFilterR improves performance on image classification tasks.
机译:过去几年目睹了深度学习模型的正规化方法的快速发展,如全面连接的深神经网络(DNN)和卷积神经网络(CNNS)。以前方法的一部分主要考虑从输入数据和隐藏图层删除功能,例如丢弃,切断和丢弃。 DropConnect选择删除完全连接的图层之间的连接。通过随机丢弃一些功能或连接,上述方法可缓解过度装备问题并提高神经网络的性能。在本文中,我们提出了一种新的正规化方法,即DropFilterr,用于学习CNN。 DropFilterr的基本思想是通过随机丢弃滤波器中随机丢弃元素放宽CNN中的重量共享规则。具体而言,我们在卷积过滤器中删除不同的元素以及它们在输入特征映射上移动。此外,我们可能施加随机降率以进一步增加所提出的方法的随机性。此外,我们找到了基于理论分析的加速DropFilterr计算的合适方法。诸如Mnist,CiFar-10和Pascal VOC等几种广泛使用的图像数据库的实验结果表明,使用DropFilterr提高了图像分类任务的性能。

著录项

  • 来源
    《Neural processing letters》 |2020年第2期|1285-1298|共14页
  • 作者单位

    School of Computer National University of Defense Technology Changsha China;

    School of Computer National University of Defense Technology Changsha China;

    School of Computer National University of Defense Technology Changsha China;

    School of Computer National University of Defense Technology Changsha China;

    School of Computer National University of Defense Technology Changsha China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    CNNs; Regularization methods; DropFilterR;

    机译:CNNS;正则化方法;dropfilterr。;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号