首页> 外文期刊>Neural processing letters >Projection Recurrent Neural Network Model: A New Strategy to Solve Weapon-Target Assignment Problem
【24h】

Projection Recurrent Neural Network Model: A New Strategy to Solve Weapon-Target Assignment Problem

机译:投影复发性神经网络模型:解决武器目标分配问题的新策略

获取原文
获取原文并翻译 | 示例

摘要

In the present research, we are going to obtain the solution of the Weapon-Target Assignment (WTA) problem. According to our search in the scientific reported papers, this is the first scientific attempt for resolving of WTA problem by projection recurrent neural network (RNN) models. Here, by reformulating the original problem to an unconstrained problem a projection RNN model as a high-performance tool to provide the solution of the problem is proposed. In continuous, the global exponential stability of the system was proved in this research. In the final step, some numerical examples are presented to depict the performance and the feasibility of the method. Reported results were compared with some other published papers.
机译:在本研究中,我们将获得武器 - 目标分配(WTA)问题的解决方案。根据我们在科学报告的论文中的搜索,这是通过投影经常性神经网络(RNN)模型来解决WTA问题的第一个科学尝试。这里,通过将原始问题的重构到无约束问题,提出了一种投影RNN模型作为提供问题解决方案的高性能工具。在持续的情况下,在这项研究中证明了该系统的全球指数稳定性。在最后一步中,提出了一些数值例子以描绘该方法的性能和可行性。报告的结果与其他一些公布的论文进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号