首页> 外文期刊>Neural processing letters >A Stable, Unified Density Controlled Memetic Algorithm for Gene Regulatory Network Reconstruction Based on Sparse Fuzzy Cognitive Maps
【24h】

A Stable, Unified Density Controlled Memetic Algorithm for Gene Regulatory Network Reconstruction Based on Sparse Fuzzy Cognitive Maps

机译:基于稀疏模糊认知地图的基因监管网络重建稳定,统一密度控制麦克法算法

获取原文
获取原文并翻译 | 示例

摘要

Gene regulatory networks (GRNs) denote the interrelation among genes in the genomic level. GRNs have a sparse network structures, and as a simulation of GRNs, the density of The Dialogue for Reverse Engineering Assessments and Methods (DREAM) challenge is less than 5%. So using sparse models to represent GRNs is a meaningful task. Fuzzy cognitive maps (FCMs) have been used to reconstruct GRNs. However, the networks learned by automated derivate-free methods is much denser than those in practical applications. Moreover, the performance of current sparse FCM learning algorithms is worse than what we expect. Therefore, proposing a fast, simple and sparse FCM learning algorithm is a realistic demand. Here, we propose a new unified algorithm: Density Controlled Memetic Algorithm (DC-MA) for learning sparse FCMs. As a simple and good-performance algorithm, memetic algorithm (MA) is chosen as the framework of DC-MA. In DC-MA, a new crossover operator and a mutation operator are designed to optimize the target, control the density and ensure the stability; the local search is used to improve the accuracy and a special self-learning operator is proposed to adjust density. To test the effectiveness of our algorithm, DC-MA is performed on synthetic data with varying sizes and densities. The results show that DC-MA obtains good performance in learning sparse FCMs from time series. On the benchmark datasets DREAM3, DREAM4 and large-scale GRN reconstruction DREAM5 dataset, DC-MA shows high accuracy. The good performance in learning sparse FCMs shows the effectiveness of DC-MA, and the simplicity and scalability of the framework ensure that DC-MA can be adapted to a wide range of needs.
机译:基因调节网络(GRNS)表示基因组水平中基因之间的相互关系。 GRN具有稀疏的网络结构,作为GRN的模拟,逆向工程评估和方法的对话的密度小于5%。所以使用稀疏模型来表示GRN是一个有意义的任务。模糊认知地图(FCMS)已被用于重建GRN。但是,通过自动衍生方法学习的网络比实际应用中的那些更密集。此外,目前稀疏FCM学习算法的性能比我们所预期的更糟糕。因此,提出快速,简单而稀疏的FCM学习算法是一种逼真的需求。在这里,我们提出了一种新的统一算法:密度控制膜算法(DC-MA)用于学习稀疏FCMS。作为一种简单且良好的性能算法,选择麦克算法(MA)作为DC-MA的框架。在DC-MA中,新的交叉操作员和突变操作员旨在优化目标,控制密度并确保稳定性;本地搜索用于提高准确性,提出了一种特殊的自学习操作员来调整密度。为了测试算法的有效性,对具有不同尺寸和密度的合成数据进行DC-MA。结果表明,DC-MA在时间序列中学习稀疏FCMS的良好性能。在基准数据集Dream3,Dream4和大型GRN重建Dream5数据集,DC-MA显示出高精度。学习稀疏FCMS的良好性能显示了DC-MA的有效性,框架的简单性和可扩展性确保DC-MA适应各种需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号