首页> 外文期刊>Neural processing letters >Discriminative Feature Learning via Sparse Autoencoders with Label Consistency Constraints
【24h】

Discriminative Feature Learning via Sparse Autoencoders with Label Consistency Constraints

机译:通过带标签一致性约束的稀疏自动码器学习歧视特征

获取原文
获取原文并翻译 | 示例

摘要

Autoencoders have been successfully used to build deep hierarchical models of data. However, a deep architecture usually needs further supervised fine-tuning to obtain better discriminative capacity. To improve the discriminative capacity of deep hierarchical features, this paper proposes a new deterministic autoencoder, trained by a label consistency constraints algorithm that injects discriminative information to the network. We introduce the center loss as label consistency constraints to learn the hidden features of data and add it to the Sparse AutoEncoder to form a new autoencoder, namely Label Consistency Constrained Sparse AutoEncoders (LCCSAE). Specifically, the center loss learns the center of each class, and simultaneously penalizes the distances between the features and their corresponding class centers. In the end, autoencoders are stacked to form a deep architecture of LCCSAE for image classification tasks. To validate the effectiveness of LCCSAE, we compare it with other autoencoders in terms of the deeply learned features and the subsequent classification tasks on MNIST and CIFAR-bw datasets. Experimental results demonstrate the superiority of LCCSAE over other methods.
机译:AutoEncoders已成功地用于构建数据的深层分层模型。然而,深度建筑通常需要进一步监督微调以获得更好的辨别能力。为了提高深度分层特征的辨别能力,本文提出了一种新的确定性AutoEndoder,由标签一致性约束算法训练,该算法将鉴别的信息注入网络。我们将中心丢失介绍为标签一致性约束,以了解数据的隐藏功能,并将其添加到稀疏的AutoEncoder以形成新的AutoEncoder,即标记一致性约束稀疏自动码器(LCCSAE)。具体而言,中心损失了解每个类的中心,并同时惩罚特征与相应的类中心之间的距离。最后,堆叠自动码器以形成用于图像分类任务的LCCSAE的深度架构。为了验证LCCSAE的有效性,我们将其与其他AutoEncoders进行比较,而是在深受学习的功能和随后的MNIST和CIFAR-BW数据集上的分类任务方面。实验结果表明LCCSAE在其他方法中的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号