首页> 外文期刊>Neural processing letters >SALA: A Self-Adaptive Learning Algorithm-Towards Efficient Dynamic Route Guidance in Urban Traffic Networks
【24h】

SALA: A Self-Adaptive Learning Algorithm-Towards Efficient Dynamic Route Guidance in Urban Traffic Networks

机译:萨拉:一种自适应学习算法 - 城市交通网络中有效的动态路线指导

获取原文
获取原文并翻译 | 示例

摘要

In order to alleviate traffic congestion for vehicles in urban networks, most of current researches mainly focused on signal optimization models and traffic assignment models, or tried to recognize the interaction between signal control and traffic assignment. However, these methods may not be able to provide fast and accurate route guidance due to the lack of individual traffic demands, real-time traffic data and dynamic cooperation between vehicles. To solve these problems, this paper proposes a dynamic and real-time route selection model in urban traffic networks ((DRSM)-S-2), which can supply a more accurate and personalized strategy for vehicles in urban traffic networks. Combining the preference for alternative routes with real-time traffic conditions, each vehicle in urban traffic networks updates its route selection before going through each intersection. Based on its historical experiences and estimation about route choices of the other vehicles, each vehicle uses a self-adaptive learning algorithm to play congestion game with each other to reach Nash equilibrium. In the route selection process, each vehicle selects the user-optimal route, which can maximize the utility of each driving vehicle. The results of the experiments on both synthetic and real-world road networks show that compared with non-cooperative route selection algorithms and three state-of-the-art equilibrium algorithms, (DRSM)-S-2 can effectively reduce the average traveling time in the dynamic and uncertain urban traffic networks.
机译:为了减轻城市网络中车辆的交通拥堵,目前的大多数研究主要集中在信号优化模型和交通分配模型上,或者试图识别信号控制和流量分配之间的交互。然而,由于缺乏个性的交通需求,实时交通数据和车辆之间的动态合作,这些方法可能无法提供快速准确的路线引导。为了解决这些问题,本文提出了城市交通网络((DRSM)-2)中的动态和实时路线选择模型,可以为城市交通网络提供更准确和个性化的车辆策略。结合使用实时流量条件的替代路线的偏好,城市交通网络中的每个车辆在通过每个交叉路口之前更新其路由选择。基于其历史经验和关于其他车辆的路线选择的估计,每辆车都使用自适应学习算法来互相播放拥塞游戏以达到纳什均衡。在路线选择过程中,每个车辆选择用户最佳路线,这可以最大化每个驾驶车辆的效用。合成和实际路线网络的实验结果表明,与非协作路线选择算法相比和三种最先进的平衡算法,(DRSM)-2可以有效地降低平均行进时间在动态和不确定的城市交通网络中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号