首页> 外文期刊>Neural processing letters >Discriminative Autoencoder for Feature Extraction: Application to Character Recognition
【24h】

Discriminative Autoencoder for Feature Extraction: Application to Character Recognition

机译:特征提取的识别性AutoEncoder:对字符识别的应用

获取原文
获取原文并翻译 | 示例

摘要

Conventionally, autoencoders are unsupervised representation learning tools. In this work, we propose a novel discriminative autoencoder. Use of supervised discriminative learning ensures that the learned representation is robust to variations commonly encountered in image datasets. Using the basic discriminating autoencoder as a unit, we build a stacked architecture aimed at extracting relevant representation from the training data. The efficiency of our feature extraction algorithm ensures a high classification accuracy with even simple classification schemes like KNN (K-nearest neighbor). We demonstrate the superiority of our model for representation learning by conducting experiments on standard datasets for character/ image recognition and subsequent comparison with existing supervised deep architectures like class sparse stacked autoencoder and discriminative deep belief network.
机译:传统上,AutoEncoders是无监督的表示学习工具。在这项工作中,我们提出了一种新颖的歧视性的自身助剂。使用监督判别学习可确保学习的表示对图像数据集中的通常遇到的变化是强大的。使用基本鉴别的AutoEncoder作为一个单位,我们构建一个堆叠的架构,旨在从训练数据中提取相关表示。我们的特征提取算法的效率可确保高分性精度,甚至是KNN(k最近邻居)等简单的分类方案。我们通过对字符/图像识别的标准数据集进行实验来展示我们的代表学习模型的优越性,以及随后与类稀疏堆叠的AutoEncoder等现有监督的深度架构和鉴别的深度信仰网络进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号