首页> 外文期刊>Neural processing letters >Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing
【24h】

Rapid Pedestrian Detection Based on Deep Omega-Shape Features with Partial Occlusion Handing

机译:基于深Ω形状的快速行人检测,部分闭塞递给

获取原文
获取原文并翻译 | 示例

摘要

Region-based Fully ConvNet (R-FCN) designed for general object detection is difficult to be directly applied for pedestrian detection, due to being with large human pose and scale changes, and even with partial occlusion in surveillance scenarios. This paper presents a rapid pedestrian detection method with partial occlusion handling, which builds on the framework of R-FCN. We introduce a deep Omega-shape feature learning and multipaths detection to make our detector be robust to human pose and scale changes. A novel predicted boxes fusion strategy is proposed to reduce the number of false negatives caused by partial occlusion in crowded environment. Our end-to-end approach achieved 95.35% mAP on the Caltech dataset, 96.22% mAP on DukeMTMC dataset and 97.43% mAP on Bronze dataset at a test-time speed of approximate 86ms per image.
机译:基于地区的完全传记(R-FCN)设计用于一般物体检测,难以直接应用于行人检测,因为具有大的人类姿势和尺度变化,甚至是监视场景中的部分闭塞。本文介绍了一种快速的行人检测方法,具有部分闭塞处理,其构建在R-FCN的框架上。我们介绍了一个深欧米茄形状的特征学习和多路径检测,使我们的探测器对人类姿势和缩放变化具有鲁棒性。提出了一种新颖的预测盒融合策略,以减少拥挤环境中部分闭塞引起的假阴性的数量。我们的端到端方法在Caltech DataSet上实现了95.35%的地图,在Dukemtmc DataSet上的96.22%地图,97.43%在铜牌数据集上的97.43%地图,测试时间速度为每张图像的大约86ms。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号