首页> 外文期刊>Neural processing letters >Attentive Semantic and Perceptual Faces Completion Using Self-attention Generative Adversarial Networks
【24h】

Attentive Semantic and Perceptual Faces Completion Using Self-attention Generative Adversarial Networks

机译:使用自我注意生成对抗网络的注意语义和知觉面孔完成

获取原文
获取原文并翻译 | 示例

摘要

We propose an approach based on self-attention generative adversarial networks to accomplish the task of image completion where completed images become globally and locally consistent. Using self-attention GANs with contextual and other constraints, the generator can draw realistic images, where fine details are generated in the damaged region and coordinated with the whole image semantically. To train the consistent generator, i.e. image completion network, we employ global and local discriminators where the global discriminator is responsible for evaluating the consistency of the entire image, while the local discriminator assesses the local consistency by analyzing local areas containing completed regions only. Last but not least, attentive recurrent neural block is introduced to obtain the attention map about the missing part in the image, which will help the subsequent completion network to fill contents better. By comparing the experimental results of different approaches on CelebA dataset, our method shows relatively good results.
机译:我们提出了一种基于自我注意的生成对抗网络的方法来完成图像完成的任务,其中已完成的图像变得全局和局部一致。使用具有上下文和其他约束条件的自我注意GAN,生成器可以绘制逼真的图像,在受损区域中生成精细的细节,并在语义上与整个图像进行协调。为了训练一致的生成器(即图像完成网络),我们使用全局和局部标识符,其中全局标识符负责评估整个图像的一致性,而局部标识符则通过仅分析包含完整区域的局部区域来评估局部一致性。最后但并非最不重要的一点是,引入了注意力循环神经块以获得有关图像中缺失部分的注意图,这将有助于后续的完成网络更好地填充内容。通过在CelebA数据集上比较不同方法的实验结果,我们的方法显示出相对较好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号