首页> 外文期刊>Neural processing letters >Fast-Convergent Fully Connected Deep Learning Model Using Constrained Nodes Input
【24h】

Fast-Convergent Fully Connected Deep Learning Model Using Constrained Nodes Input

机译:使用约束节点输入的快速收敛的全连接深度学习模型

获取原文
获取原文并翻译 | 示例

摘要

Recently, deep learning models exhibit promising performance in various applications. However, most of them converge slowly due to gradient vanishing. To address this problem, we propose a fast convergent fully connected deep learning network in this study. Through constraining the input values of nodes on the fully connected layers, the proposed method is able to well mitigate the gradient vanishing problems in training phase, and thus greatly reduces the training iterations required to reach convergence. Nevertheless, the drop of generalization performance is negligible. Experimental results validate the effectiveness of the proposed method.
机译:最近,深度学习模型在各种应用程序中展现出令人鼓舞的性能。但是,由于梯度消失,它们中的大多数会缓慢收敛。为了解决这个问题,我们在这项研究中提出了一个快速收敛的全连接深度学习网络。通过约束全连接层上节点的输入值,该方法能够很好地缓解训练阶段的梯度消失问题,从而大大减少了达到收敛所需的训练迭代次数。但是,泛化性能的下降可以忽略不计。实验结果验证了该方法的有效性。

著录项

  • 来源
    《Neural processing letters》 |2019年第3期|995-1005|共11页
  • 作者单位

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

    Northwestern Polytech Univ, Sch Comp Sci & Engn, Xian, Shaanxi, Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Deep learning model; Fast convergent method; Constrained input value of nodes;

    机译:深度学习模型;快速收敛方法;节点的约束输入值;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号