首页> 外文期刊>Neural processing letters >Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications
【24h】

Automatic Tumor Segmentation with Deep Convolutional Neural Networks for Radiotherapy Applications

机译:具有深度卷积神经网络的肿瘤自动分割在放射治疗中的应用

获取原文
获取原文并翻译 | 示例

摘要

Accurate tumor delineation in medical images is of great importance in guiding radiotherapy. In nasopharyngeal carcinoma (NPC), due to its high variability, low contrast and discontinuous boundaries in magnetic resonance images (MRI), the margin of the tumor is especially difficult to be identified, making the radiotherapy planning a more challenging problem. The objective of this paper is to develop an automatic segmentation method of NPC in MRI for radiosurgery applications. To this end, we present to segment NPC using a deep convolutional neural network. Specifically, to obtain spatial consistency as well as accurate feature details for segmentation, multiple convolution kernel sizes are employed. The network contains a large number of trainable parameters which capture the relationship between the MRI intensity images and the corresponding label maps. When trained on subjects with pre-labeled MRI, the network can estimate the label class of each voxel for the testing subject which is only given the intensity image. To demonstrate the segmentation performance, we carry on our method on the T1-weighted images of 15 NPC patients, and compare the segmentation results against the radiologist's reference outline. Experimental results show that the proposed method outperforms the traditional hand-crafted features based segmentation methods. The presented method in this paper could be useful for NPC diagnosis and helpful for guiding radiotherapy.
机译:在医学图像中准确地描绘肿瘤对指导放射治疗非常重要。在鼻咽癌(NPC)中,由于其高变异性,低对比度和磁共振图像(MRI)中的边界不连续,特别难以识别肿瘤的边缘,这使得放射治疗计划成为更具挑战性的问题。本文的目的是开发一种用于放射外科的MRI中NPC的自动分割方法。为此,我们提出使用深度卷积神经网络对NPC进行分段。具体地,为了获得空间一致性以及用于分割的准确的特征细节,采用了多个卷积核大小。该网络包含大量可训练的参数,这些参数捕获了MRI强度图像和相应标签图之间的关系。在接受带有预标记MRI的对象的训练时,网络可以为测试对象估计每个体素的标签类别,仅给定强度图像。为了演示分割性能,我们对15位NPC患者的T1加权图像进行了分割,并将分割结果与放射科医生的参考轮廓进行了比较。实验结果表明,该方法优于传统的基于特征的手工分割方法。本文提出的方法可能对鼻咽癌的诊断和指导放疗有帮助。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号