首页> 外文期刊>Neural, Parallel & Scientific Computations >A NEW HIGH ACCURACY VARIABLE MESH DISCRETIZATION FOR THE SOLUTION OF THE SYSTEM OF 2D NON-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS
【24h】

A NEW HIGH ACCURACY VARIABLE MESH DISCRETIZATION FOR THE SOLUTION OF THE SYSTEM OF 2D NON-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

机译:二维非线性椭圆边值问题系统的一种新型高精度变网格离散

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we develop an O(k~2+ k~2h_1+h_1~3 ) nine-point compact off-step finite difference discretization for the solution of the system of two-dimensional non-linear elliptic equations subject to Dirichlet boundary conditions, by using variable mesh lengths h_1 in x-direction and a constant mesh length k in j-direction. We use only three function evaluations. Further we discuss the conditions for the convergence of the iterative methods applied to the system of difference equations so framed for the steady state 2D convection-diffusion equation. Numerical illustrations of some benchmark problems including 2D non-linear convection equation and 2D steady-state Navier-stokes equations of motion are provided to depict the efficiency of the method.
机译:本文针对Dirichlet边界下的二维非线性椭圆方程组的解,开发了O(k〜2 + k〜2h_1 + h_1〜3)九点紧离步有限差分离散化通过在x方向上使用可变的网格长度h_1和在j方向上使用恒定的网格长度k来确定条件。我们仅使用三个功能评估。进一步,我们讨论了应用于稳态二维对流扩散方程的差分方程组的迭代方法收敛的条件。提供了一些基准问题的数字图示,包括二维非线性对流方程和二维稳态Navier-stokes运动方程,以描述该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号