首页> 外文期刊>Neural, Parallel & Scientific Computations >A HIGHLY PARALLEL ALGORITHM FOR SOLVING POISSON EQUATION USING BLOCK DECOMPOSITIONS
【24h】

A HIGHLY PARALLEL ALGORITHM FOR SOLVING POISSON EQUATION USING BLOCK DECOMPOSITIONS

机译:用块分解求解泊松方程的高度并行算法。

获取原文
获取原文并翻译 | 示例

摘要

Poisson equation is frequently encountered in mathematical modeling for scientific and engineering applications. Fast Poisson numerical solvers for 2D and 3D problems are, thus, highly requested for its simulations. In this paper, we consider solving the Poisson equation ▽~2u = f(x,y) in the Cartesian domain Ω = [-1, 1] (×) [-1, 1], subject to homogeneous Dirichlet boundary condition, discretized with the Chebyshev pseudo-spectral method. The main purpose of this paper is to propose a two-level block decomposition scheme for decoupling the original linear system obtained from the discretization into independent subsystems. The first level of the block decomposition uses the eigenpairs of the second-order Chebyshev differentiation matrix in one space dimension and the second level of the decomposition exploits a special reflexivity property inherent in this differentiation matrix. The decomposition not only yields a more efficient algorithm but introduces high-degree coarse-grain parallelism. This approach can also be applied to Laplace eigenvalue problem discretized with the Chebyshev pseudo-spectral method as well, subject to the same boundary conditions.
机译:在科学和工程应用的数学建模中经常遇到泊松方程。因此,对于2D和3D问题的快速Poisson数值求解器的仿真要求很高。本文考虑在笛卡尔域Ω= [-1,1](×)[-1,1]中求解泊松方程▽〜2u = f(x,y),且服从齐次Dirichlet边界条件用Chebyshev伪光谱方法。本文的主要目的是提出一种两级块分解方案,用于将离散化获得的原始线性系统解耦到独立的子系统中。块分解的第一级在一个空间维度上使用二阶Chebyshev微分矩阵的特征对,而第二级分解则利用了该微分矩阵固有的特殊反射性。分解不仅产生了更有效的算法,而且引入了高度的粗粒度并行度。在相同边界条件下,该方法也可以应用于用Chebyshev伪谱方法离散化的Laplace特征值问题。

著录项

  • 来源
    《Neural, Parallel & Scientific Computations》 |2015年第4期|267-275|共9页
  • 作者

    HSIN-CHU CHEN;

  • 作者单位

    Department of Computer and Information Science, Clark Atlanta University, Atlanta, GA 30314, USA;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号