首页> 外文期刊>Neural, Parallel & Scientific Computations >CONVERGENCE ANALYSIS OF EXPONENTIAL EXPANDING MESHES COMPACT-FDM FOR POISSON EQUATION IN POLAR COORDINATE SYSTEM
【24h】

CONVERGENCE ANALYSIS OF EXPONENTIAL EXPANDING MESHES COMPACT-FDM FOR POISSON EQUATION IN POLAR COORDINATE SYSTEM

机译:极坐标系泊松方程指数展开网格compact-FDM的收敛性分析

获取原文
获取原文并翻译 | 示例

摘要

We develop a third (four) order accurate new nine-point compact finite difference scheme for the numerical solution of two-dimensional Poisson equation in polar form. The peculiar character of the exponential expanding mesh parameters help us in resolving interior or boundary layer in the partial differential equations. The proposed scheme takes care of grid singularity and oblique coefficient that accompany the polar form of Poisson equation. A detailed discrete convergence analysis for the difference scheme has been developed based on monotone and irreducible property of the iteration matrix. Numerical accuracy of the solutions has been obtained that shows the applicability of the scheme in the presence of singularity and thin layers. Comparing the proposed third order compact scheme with the corresponding fourth order uniform mesh strategy, the solution accuracy proved to be highly satisfactory.
机译:针对极性形式的二维泊松方程的数值解,我们开发了一种三(四)阶精确的新的九点紧致差分格式。指数扩展网格参数的独特特征有助于我们解决偏微分方程中的内部或边界层问题。拟议的方案照顾到网格奇异性和倾斜系数,伴随着泊松方程的极坐标形式。基于迭代矩阵的单调性和不可约性,对差分方案进行了详细的离散收敛分析。已获得解决方案的数值精度,表明该方案在存在奇异性和薄层的情况下的适用性。将所提出的三阶紧凑方案与相应的四阶均匀网格策略进行比较,证明了求解精度非常令人满意。

著录项

  • 来源
    《Neural, Parallel & Scientific Computations》 |2015年第4期|293-305|共13页
  • 作者

    NAVNIT JHA;

  • 作者单位

    Faculty of Mathematics & Computer Science, South Asian University, Chanakyapuri, New Delhi 110021, India;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号