首页> 外文期刊>International journal of modeling, simulation and scientific computing >An exponential expanding meshes sequence and finite difference method adopted for two-dimensional elliptic equations
【24h】

An exponential expanding meshes sequence and finite difference method adopted for two-dimensional elliptic equations

机译:二维椭圆方程组采用指数展开网格序列和有限差分方法

获取原文
获取原文并翻译 | 示例

摘要

We demonstrate a new nonuniform mesh finite difference method to obtain accurate solutions for the elliptic partial differential equations in two dimensions with nonlinear first-order partial derivative terms. The method will be based on a geometric grid network area and included among the most stable differencing scheme in which the nine-point spatial finite differences are implemented, thus arriving at a compact formulation. In general, a third order of accuracy has been achieved and a fourth-order truncation error in the solution values will follow as a particular case. The efficiency of using geometric mesh ratio parameter has been shown with the help of illustrations. The convergence of the scheme has been established using the matrix analysis, and irre-ducibility is proved with the help of strongly connected characteristics of the iteration matrix. The difference scheme has been applied to test convection diffusion equation, steady state Burger's equation, ocean model and a semi-linear elliptic equation. The computational results confirm the theoretical order and accuracy of the method.
机译:我们演示了一种新的非均匀网格有限差分方法,该方法可获取带有非线性一阶偏导数项的二维椭圆偏微分方程的精确解。该方法将基于几何网格网络区域,并包括在最稳定的差分方案中,在该方案中实现了九点空间有限差分,从而得出了紧凑的公式。通常,已经达到了三阶精度,并且在特定情况下,解值中的四阶截断误差也会随之而来。通过图示说明了使用几何网格比率参数的效率。通过矩阵分析确定了该方案的收敛性,并通过迭代矩阵的强连通特性证明了不可约性。差分方案已应用于测试对流扩散方程,稳态Burger's方程,海洋模型和半线性椭圆方程。计算结果证实了该方法的理论顺序和准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号