首页> 外文期刊>Neural, Parallel & Scientific Computations >AN APPLICATION OF ANNS ON POWER SERIES METHOD FOR SOLVING FRACTIONAL FREDHOLM TYPE INTEGRO-DIFFERENTIAL EQUATIONS
【24h】

AN APPLICATION OF ANNS ON POWER SERIES METHOD FOR SOLVING FRACTIONAL FREDHOLM TYPE INTEGRO-DIFFERENTIAL EQUATIONS

机译:人工神经网络在幂级数解分数阶Fredholm型积分微分方程中的应用

获取原文
获取原文并翻译 | 示例

摘要

For the last decade, several authors demonstrated the performance of artificial neural network models over other traditional testing methods. The current research, aimed to present a global optimization technique based on combination of neural networks approach and power series method for the numerical solution of a fractional Fredholm type integro-differential equation involving the Caputo derivative. The mentioned problem to be solved approximately for the unknown series coefficients via a three-layer feed-forward neural architecture. In other words, an accurate truncated power series representation of the solution function is achieved when a suitable learning algorithm is used for the suggested neural architecture. As applications of the present iterative approach, some kinds of integro-differential equations are investigated. The achieved simulations are compared with the results obtained by some existing algorithms.
机译:在过去的十年中,几位作者展示了人工神经网络模型相对于其他传统测试方法的性能。当前的研究旨在提出一种基于神经网络方法和幂级数方法相结合的全局优化技术,用于求解涉及Caputo导数的分数Fredholm型积分微分方程的数值解。通过三层前馈神经体系结构,针对未知序列系数可以大致解决上述问题。换句话说,当将合适的学习算法用于建议的神经体系结构时,可以实现求解函数的精确截断的幂级数表示。作为本迭代方法的应用,研究了一些积分微分方程。将获得的仿真与通过某些现有算法获得的结果进行比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号