首页> 外文期刊>IEEE Transactions on Neural Networks >Back-propagation learning and nonidealities in analog neural network hardware
【24h】

Back-propagation learning and nonidealities in analog neural network hardware

机译:模拟神经网络硬件中的反向传播学习和非理想性

获取原文
获取原文并翻译 | 示例

摘要

Experimental results from adaptive learning using an optically controlled neural network are presented. The authors have used example problems in nonlinear system identification and signal prediction, two areas of potential neural network application, to study the capabilities of analog neural hardware. These experiments investigated the effects of a variety of nonidealities typical of analog hardware systems. They show that network using large arrays of nonuniform components can perform analog communications with a much higher degree of accuracy than might be expected given the degree of variation in the network's elements. The effects of other common nonidealities, such as noise, weight quantization, and dynamic range limitations, were also investigated.
机译:提出了使用光控神经网络进行自适应学习的实验结果。作者在非线性系统识别和信号预测这两个潜在的神经网络应用领域中使用了示例问题,以研究模拟神经硬件的功能。这些实验研究了模拟硬件系统典型的各种非理想性的影响。他们表明,使用大型非均匀组件阵列的网络可以比在给定网络元素变化程度的情况下预期的精度高得多的方式执行模拟通信。还研究了其他常见非理想因素的影响,例如噪声,权重量化和动态范围限制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号