首页> 外文期刊>IEEE Transactions on Neural Networks >Handwritten digit recognition by neural networks with single-layer training
【24h】

Handwritten digit recognition by neural networks with single-layer training

机译:通过单层训练的神经网络进行手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

It is shown that neural network classifiers with single-layer training can be applied efficiently to complex real-world classification problems such as the recognition of handwritten digits. The STEPNET procedure, which decomposes the problem into simpler subproblems which can be solved by linear separators, is introduced. Provided appropriate data representations and learning rules are used, performance comparable to that obtained by more complex networks can be achieved. Results from two different databases are presented: an European database comprising 8700 isolated digits and a zip code database from the US Postal Service comprising 9000 segmented digits. A hardware implementation of the classifier is briefly described.
机译:结果表明,经过单层训练的神经网络分类器可以有效地应用于复杂的现实世界分类问题,例如手写数字的识别。介绍了STEPNET过程,该过程将问题分解为可以通过线性分隔符解决的更简单的子问题。只要使用适当的数据表示和学习规则,就可以实现与更复杂的网络可比的性能。呈现了来自两个不同数据库的结果:包含8700个独立数字的欧洲数据库,以及来自美国邮政服务的9000个分段数字的邮政编码数据库。简要描述了分类器的硬件实现。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号