首页> 外文期刊>IEEE Transactions on Neural Networks >Learning and tuning fuzzy logic controllers through reinforcements
【24h】

Learning and tuning fuzzy logic controllers through reinforcements

机译:通过增强学习和调整模糊逻辑控制器

获取原文
获取原文并翻译 | 示例

摘要

A method for learning and tuning a fuzzy logic controller based on reinforcements from a dynamic system is presented. It is shown that: the generalized approximate-reasoning-based intelligent control (GARIC) architecture learns and tunes a fuzzy logic controller even when only weak reinforcement, such as a binary failure signal, is available; introduces a new conjunction operator in computing the rule strengths of fuzzy control rules; introduces a new localized mean of maximum (LMOM) method in combining the conclusions of several firing control rules; and learns to produce real-valued control actions. Learning is achieved by integrating fuzzy inference into a feedforward network, which can then adaptively improve performance by using gradient descent methods. The GARIC architecture is applied to a cart-pole balancing system and demonstrates significant improvements in terms of the speed of learning and robustness to changes in the dynamic system's parameters over previous schemes for cart-pole balancing.
机译:提出了一种基于动态系统的增强学习和调整模糊逻辑控制器的方法。结果表明:即使只有微弱的强化,例如二进制失效信号,通用的基于近似推理的智能控制(GARIC)体系结构也可以学习和调整模糊逻辑控制器;在计算模糊控制规则的规则强度时引入了新的合取运算符;结合几种点火控制规则的结论,引入了一种新的局部最大均值(LMOM)方法;并学习产生实际价值的控制动作。通过将模糊推理集成到前馈网络中来实现学习,然后可以使用梯度下降方法自适应地提高性能。 GARIC体系结构被应用到一个磁极平衡系统,并且在学习速度和对动态系统参数变化的鲁棒性方面,与以前的磁极平衡方案相比,展示了显着的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号