首页> 外文期刊>IEEE Transactions on Neural Networks >A connectionist approach for rule-based inference using an improved relaxation method
【24h】

A connectionist approach for rule-based inference using an improved relaxation method

机译:使用改进的松弛方法的基于规则的推理的连接方法

获取原文
获取原文并翻译 | 示例

摘要

A connectionist mechanism for an inference problem alternative to the usual chaining method is described. The inference problem is within the scope of propositional logic that contains no variables and with some enhanced knowledge representation facilities. The method is an application of mathematical programming where knowledge and data are transformed into constraint equations. In the network, the nodes represent propositions and constraint equations, and the violation of constraints is formulated as an energy function. The inference is realized as a minimization process of the energy function using the relaxation method to search for a truth value distribution that achieves the optimum consistency with the given knowledge and data. A modified relaxation method is proposed to improve the computational inefficiencies associated with the optimization process. The behavior of the method is analyzed through examples of deductive and abductive inference and of inference with unorganized knowledge.
机译:描述了一种替代常规链接方法的推理问题的连接机制。推理问题在命题逻辑的范围之内,命题逻辑不包含任何变量,并且具有一些增强的知识表示功能。该方法是数学编程的一种应用,其中知识和数据被转换为约束方程式。在网络中,节点表示命题和约束方程式,并将违反约束条件表述为能量函数。推论是使用松弛方法搜索真值分布的能量函数的最小化过程,该真值分布与给定的知识和数据实现最佳一致性。提出了一种改进的松弛方法,以改善与优化过程相关的计算效率。通过演绎和演绎推理以及对无组织知识的推理示例,分析了该方法的行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号