首页> 外文期刊>IEEE Transactions on Neural Networks >Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers
【24h】

Translation, rotation, and scale invariant pattern recognition by high-order neural networks and moment classifiers

机译:通过高阶神经网络和矩分类器进行平移,旋转和尺度不变模式识别

获取原文
获取原文并翻译 | 示例

摘要

The classification and recognition of two-dimensional patterns independently of their position, orientation, and size by using high-order networks are discussed. A method is introduced for reducing and controlling the number of weights of a third-order network used for invariant pattern recognition. The method leads to economical networks that exhibit high recognition rates for translated, rotated, and scaled, as well as locally distorted, patterns. The performance of these networks at recognizing types and handwritten numerals independently of their position, size, and orientation is compared with and found superior to the performance of a layered feedforward network to which image features extracted by the method of moments are presented as input.
机译:讨论了通过使用高阶网络对二维图案的分类和识别,而与它们的位置,方向和大小无关。引入了一种用于减少和控制用于不变模式识别的三阶网络的权数的方法。该方法导致了经济的网络,该网络对于平移,旋转和缩放以及局部失真的模式都显示出很高的识别率。将这些网络在识别类型和手写数字时的性能(与它们的位置,大小和方向无关)进行比较,并发现其优于分层前馈网络的性能,该分层前馈网络将通过矩量法提取的图像特征呈现为输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号