首页> 外国专利> PATTERN RECOGNITION APPARATUS AND METHODS INVARIANT TO TRANSLATION, SCALE CHANGE AND ROTATION

PATTERN RECOGNITION APPARATUS AND METHODS INVARIANT TO TRANSLATION, SCALE CHANGE AND ROTATION

机译:模式识别装置和方法,与翻译,缩放和旋转无关

摘要

1,223,348. Pattern recognition; calculating. INTERNATIONAL BUSINESS MACHINES CORP. 25 April, 1969 [21 May, 1968], No. 21209/69. Headings G4A and G4R. A pattern recognition system compares an effective Nth order self-scale function or Nth order hybrid self function of an unknown pattern with the same function of a reference pattern, or generates and raises to the Nth power the cross-correlation of unknown and reference pattern data. Data from a raster scan of the unknown pattern is stored in a first utility memory as data with associated X and Y co-ordinates, the centre of gravity of the pattern is calculated from this information and the co-ordinates are then altered so as to be relative to this centre of gravity as origin (displaced by a constant vector so that no co-ordinate will be negative). The data is then transferred to a second utility memory in such a way that the results simulate an annular scan of the pattern with exponentially increasing radius, using addresses read from the second memory to address the first. Apart from these addresses and the transferred data, the second memory contains polar coordinates of the data. The data and polar coordinates are transferred to an input signal memory and from there the data is crosscorrelated with reference data from L reference memories in turn, where L is the number of possible patterns, as follows. For a given reference memory, the locations of a correlation result memory are addressed in turn, and for each, each item of data in the input signal memory is multiplied by data obtained by addressing the reference memory with the concatenation of the polar co-ordinates associated with the data item in the input signal memory, each incremented by a respective quantity preloaded in the addressed location of the correlation result memory and either changed, if necessary, to lie in a certain range or preventing addressing if outside a certain range. The results of the multiplications are accumulated, then stored in the addressed location of the correlation result memory. The correlation results for a given reference pattern are then either each raised to the Nth power and then accumulated, or each raised as a power to 2 and then accumulated, or the largest is selected. Whichever of these three non-linear operations is used, a result is obtained for each of the reference patterns. Each such result is divided (or multiplied) by a respective normalization factor from a memory to give a quantity, the largest of such quantities from the reference patterns considered so far, being passed together with reference pattern identifiers, to an output memory for a recognition decision. In the case of the third non-linear operation above (" largest "), quantities in effect selected from the correlation result memory indicating size, rotation &c. are also passed. The raising to the Nth power is done by repeated multiplication by itself, whereas the raising as a power to 2 is done by loading a shift register with 000 ... 0001, and left-shifting while decrementing the quantity to be raised, to zero. Autocorrelation may replace the centre of gravity manipulations. The cross-correlation may be done with the original pattern data. During a learning mode using reference patterns, the reference memories are loaded with what they would be correlated with in recognition mode, and the normalization factor memory is loaded with the square-roots of the results from the non-linear operation used (on the reference patterns). The operations above are equivalent to evaluating similarity functions which are the normalized integral of the product of the Nth order autocorrelation functions of the unknown pattern and a reference pattern (translation invariant), or similar quantities using Nth order self scale functions (which are integrals invariant to scale change) or Nth order hybrid self-functions (which are integrals invariant to scale and rotation) in place of the Nth order autocorrelation functions, or normalized quantities involving sums of exponentials of sums of products, or normalized quantities involving maxima of sums of products. Integrals are evaluated as sums, operations being electric digital throughout. The mathematical expressions are given in the Specification.
机译:1,223,348。模式识别;计算。国际商用机器公司1969年4月25日[1968年5月21日],编号21209/69。标题G4A和G4R。模式识别系统将未知模式的有效N阶自标度函数或N阶混合自函数与参考模式的相同函数进行比较,或生成未知数与参考模式数据的互相关并将其提升至N次方。来自未知图案的光栅扫描的数据作为具有关联的X和Y坐标的数据存储在第一实用程序存储器中,从该信息计算出图案的重心,然后更改坐标,以便相对于此重心作为原点(由恒定向量位移,因此坐标不为负)。然后,将数据以这样一种方式传输到第二个实用程序存储器中:使用从第二个存储器读取的地址对第一个存储器进行寻址,结果可以模拟半径呈指数增加的环形图案扫描。除了这些地址和传输的数据外,第二个存储器还包含数据的极坐标。数据和极坐标被传送到输入信号存储器,并且数据从那里依次与来自L个参考存储器的参考数据互相关,其中L是如下所示的可能模式数。对于给定的参考存储器,依次对相关结果存储器的位置进行寻址,并且对于每个结果,将输入信号存储器中的每一项数据乘以通过对极坐标的并置来对参考存储器进行寻址而获得的数据。与输入信号存储器中的数据项相关联的数据相关联,每个以预加载在相关结果存储器的寻址位置中的相应量递增,并且如果需要的话改变为处于特定范围内,或者如果在特定范围外则防止寻址。乘法结果被累加,然后存储在相关结果存储器的寻址位置。然后将给定参考图案的相关结果分别提高到第N次方,然后进行累加,或者将每个结果提高到2次方,然后再进行累加,或者选择最大值。无论使用这三个非线性运算中的哪一个,都会为每个参考图案获得结果。每个这样的结果被一个存储器的相应的归一化因子除(或相乘)以给出一个量,该量是迄今为止考虑的参考模式中最大的量,与参考模式标识符一起传递给输出存储器以进行识别决定。在上述第三次非线性运算的情况下(“最大”),从相关结果存储器中选择的有效量表示大小,旋转和c。也通过了。本身通过重复乘法来提高到N次方,而通过将000 ... 0001装入移位寄存器,并在将要增加的量减为零的同时向左移位来完成作为2的幂的提高。 。自相关可以代替重心操作。互相关可以通过原始图案数据来完成。在使用参考模式的学习模式期间,参考存储器将加载在识别模式下将与之关联的内容,而归一化因子存储器则将使用的非线性运算结果的平方根加载(在参考上模式)。上述操作等效于评估相似度函数,该相似度函数是未知模式与参考模式的N阶自相关函数乘积的归一化积分(平移不变),或者使用N阶自定标函数(其为积分不变)来估计相似量代替N阶自相关函数或涉及乘积总和的指数和的归一化量,或涉及乘积总和的最大值的归一化量来代替N阶自相关函数或N阶混合自函数(对尺度和旋转不变的积分)。产品。积分被评估为总和,操作始终是数字化的。规范中给出了数学表达式。

著录项

相似文献

  • 专利
  • 外文文献
  • 中文文献
获取专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号