首页> 外文期刊>IEEE Transactions on Neural Networks >Empirical results of using back-propagation neural networks to separate single echoes from multiple echoes
【24h】

Empirical results of using back-propagation neural networks to separate single echoes from multiple echoes

机译:使用反向传播神经网络将单个回波与多个回波分开的经验结果

获取原文
获取原文并翻译 | 示例

摘要

Empirical results illustrate the pitfalls of applying an artificial neural network (ANN) to classification of underwater active sonar returns. During training, a back-propagation ANN classifier learns to recognize two classes of reflected active sonar waveforms: waveforms having two major sonar echoes or peaks and those having one major echo or peak. It is shown how the classifier learns to distinguish between the two classes. Testing the ANN classifier with different waveforms of each type generated unexpected results: the number of echo peaks was nor the feature used to separate classes.
机译:实证结果说明了将人工神经网络(ANN)应用于水下主动声纳返回的分类的陷阱。在训练期间,反向传播ANN分类器学习识别反射的活动声纳波形的两类:具有两个主要声纳回波或峰值的波形以及具有一个主要回波或峰值的波形。它显示了分类器如何学习区分两个类。用每种类型的不同波形测试ANN分类器会产生意想不到的结果:回波峰值的数量也不是用于分隔类的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号