首页> 外文期刊>IEEE Transactions on Neural Networks >Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations
【24h】

Analysis and synthesis of feedforward neural networks using discrete affine wavelet transformations

机译:基于离散仿射小波变换的前馈神经网络分析与合成

获取原文
获取原文并翻译 | 示例

摘要

A representation of a class of feedforward neural networks in terms of discrete affine wavelet transforms is developed. It is shown that by appropriate grouping of terms, feedforward neural networks with sigmoidal activation functions can be viewed as architectures which implement affine wavelet decompositions of mappings. It is shown that the wavelet transform formalism provides a mathematical framework within which it is possible to perform both analysis and synthesis of feedforward networks. For the purpose of analysis, the wavelet formulation characterizes a class of mappings which can be implemented by feedforward networks as well as reveals an exact implementation of a given mapping in this class. Spatio-spectral localization properties of wavelets can be exploited in synthesizing a feedforward network to perform a given approximation task. Two synthesis procedures based on spatio-spectral localization that reduce the training problem to one of convex optimization are outlined.
机译:提出了用离散仿射小波变换表示一类前馈神经网络的方法。结果表明,通过对术语进行适当的分组,可以将具有S型激活函数的前馈神经网络视为实现映射的仿射小波分解的体系结构。结果表明,小波变换形式主义提供了一个数学框架,在其中可以执行前馈网络的分析和综合。为了分析的目的,小波公式描述了可以通过前馈网络实现的一类映射,并揭示了该类中给定映射的精确实现。在合成前馈网络以执行给定逼近任务时,可以利用小波的时空频谱定位特性。概述了两种基于时空光谱定位的综合方法,将训练问题简化为凸优化之一。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号