首页> 外文期刊>IEEE Transactions on Neural Networks >Network information criterion-determining the number of hidden units for an artificial neural network model
【24h】

Network information criterion-determining the number of hidden units for an artificial neural network model

机译:网络信息准则,用于确定人工神经网络模型的隐藏单元数

获取原文
获取原文并翻译 | 示例

摘要

The problem of model selection, or determination of the number of hidden units, can be approached statistically, by generalizing Akaike's information criterion (AIC) to be applicable to unfaithful (i.e., unrealizable) models with general loss criteria including regularization terms. The relation between the training error and the generalization error is studied in terms of the number of the training examples and the complexity of a network which reduces to the number of parameters in the ordinary statistical theory of AIC. This relation leads to a new network information criterion which is useful for selecting the optimal network model based on a given training set.
机译:通过将Akaike的信息标准(AIC)推广到适用于具有一般损失标准(包括正则化项)的不忠实(即,无法实现)的模型,可以从统计学上解决模型选择或确定隐藏单元数量的问题。根据训练样本的数量和网络的复杂性来研究训练误差和泛化误差之间的关系,而网络的复杂性降低了AIC的常规统计理论中的参数数量。这种关系导致新的网络信息标准,该标准对于基于给定的训练集选择最佳网络模型很有用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号