首页> 外文期刊>Pattern Analysis and Applications >Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation
【24h】

Hybrid hidden Markov models and artificial neural networks for handwritten music recognition in mensural notation

机译:混合隐马尔可夫模型和人工神经网络的月经符号手写音乐识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we present a hybrid approach using hidden Markov models (HMM) and artificial neural networks to deal with the task of handwritten Music Recognition in mensural notation. Previous works have shown that the task can be addressed with Gaussian density HMMs that can be trained and used in an end-to-end manner, that is, without prior segmentation of the symbols. However, the results achieved using that approach are not sufficiently accurate to be useful in practice. In this work, we hybridize HMMs with deep multilayer perceptrons (MLPs), which lead to remarkable improvements in optical symbol modeling. Moreover, this hybrid architecture maintains important advantages of HMMs such as the ability to properly model variable-length symbol sequences through segmentation-free training, and the simplicity and robustness of combining optical models with N-gram language models, which provide statistical a priori information about regularities in musical symbol concatenation observed in the training data. The results obtained with the proposed hybrid MLP-HMM approach outperform previous works by a wide margin, achieving symbol-level error rates around 26%, as compared with about 40% reported in previous works.
机译:在本文中,我们提出了一种使用隐马尔可夫模型(HMM)和人工神经网络的混合方法来处理心理符号中手写音乐识别的任务。先前的工作表明,可以使用高斯密度HMM来解决该任务,该HMM可以以端到端的方式进行训练和使用,也就是说,无需事先对符号进行分段。但是,使用该方法获得的结果不够准确,无法在实践中使用。在这项工作中,我们将HMM与深多层感知器(MLP)进行了杂交,这导致了光学符号建模的显着改进。此外,这种混合体系结构保留了HMM的重要优势,例如能够通过无分段训练正确建模可变长度符号序列,以及将光学模型与N-gram语言模型相结合的简单性和鲁棒性,从而提供统计先验信息。关于在训练数据中观察到的音乐符号串联的规律性。拟议的混合MLP-HMM方法获得的结果在很大程度上优于以前的工作,实现了约26%的符号级错误率,而以前的工作中报告的错误率约为40%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号