首页> 外文期刊>IEEE Transactions on Neural Networks >Neighbor-layer updating in MBDS for the recall of pure bipolar patterns in gray-scale noise
【24h】

Neighbor-layer updating in MBDS for the recall of pure bipolar patterns in gray-scale noise

机译:MBDS中的相邻层更新,用于调出灰度噪声中的纯双极性模式

获取原文
获取原文并翻译 | 示例

摘要

To improve bidirectional associative memory (BAM), a modified bidirectional decoding strategy (MBDS) network has been proposed. The former is a two-layer structure in which stored associations are recalled by directionally updating the neuron state through the connecting weights M and M/sup T/. The latter is an extension of the former in which two hidden layers are augmented and the corresponding extra connection weights-M/sub x/, M/sub y/, Tx, and T/sub y/-are encoded. The authors introduce a new updating rule for MBDS networks, called neighbor-layer updating (NLU), which gathers all weighted activations of all neighbor layers. The neighbor layers are defined as the layers in which there are direct synaptic weights connected to each other. Because of modification of the connection weights-M/sub x/, M/sub y/, Tx, and T/sub y/-and the constant bias inputs of MBDS, all stored associations are guaranteed to be recalled using NLU. Furthermore, with the aid of the Cohen-Grossberg theorem, all discrete MBDS results can be extended to continuous MBDS (CMBDS). The authors also give stability proofs of both discrete MBDS and CMBDS, Computer simulations demonstrate that the proposed CMBDS can be applied to recall pure bipolar patterns in the presence of gray-scale noise. The authors show that by removing BAM connections (matrix M) from the MBDS structure, a bidirectional holographic memory (BHM) is obtained. Both derivation and simulation indicate that one can remove the matrix M from the MBDS structure if the dimension of the training associations is larger than 16.
机译:为了改善双向关联存储器(BAM),已经提出了一种改进的双向解码策略(MBDS)网络。前者是两层结构,其中通过通过连接权重M和M / sup T /定向更新神经元状态来调出存储的关联。后者是前者的扩展,其中增加了两个隐藏层,并对相应的额外连接权重M / sub x /,M / sub y /,Tx和T / sub y /进行了编码。作者介绍了一种用于MBDS网络的新更新规则,称为邻居层更新(NLU),该规则收集了所有邻居层的所有加权激活。相邻层被定义为其中直接突触权重彼此连接的层。由于修改了连接权重M / sub x /,M / sub y /,Tx和T / sub y /-和MBDS的恒定偏置输入,因此可以确保使用NLU调用所有存储的关联。此外,借助Cohen-Grossberg定理,所有离散的MBDS结果都可以扩展到连续MBDS(CMBDS)。作者还提供了离散MBDS和CMBDS的稳定性证明。计算机仿真表明,所提出的CMBDS可以用于在存在灰度噪声的情况下调用纯双极性模式。作者表明,通过从MBDS结构中删除BAM连接(矩阵M),可以获得双向全息存储器(BHM)。推导和仿真均表明,如果训练关联的维数大于16,则可以从MBDS结构中删除矩阵M。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号