首页> 外文期刊>IEEE Transactions on Neural Networks >Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks
【24h】

Approximation capability to functions of several variables, nonlinear functionals, and operators by radial basis function neural networks

机译:径向基函数神经网络对多个变量,非线性函数和算子的逼近能力

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this paper is to explore the representation capability of radial basis function (RBF) neural networks. The main results are: 1) the necessary and sufficient condition for a function of one variable to be qualified as an activation function in RBF network is that the function is not an even polynomial, and 2) the capability of approximation to nonlinear functionals and operators by RBF networks is revealed, using sample data either in frequency domain or in time domain, which can be used in system identification by neural networks.
机译:本文的目的是探索径向基函数(RBF)神经网络的表示能力。主要结果是:1)一个变量的函数在RBF网络中被认定为激活函数的充要条件是该函数不是偶多项式,以及2)逼近非线性函数和算子的能力通过使用RBF网络揭示了频域或时域中的样本数据,可将其用于神经网络进行系统识别。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号