首页> 外文期刊>IEEE Transactions on Neural Networks >Adaptive detection of small sinusoidal signals in non-Gaussian noise using an RBF neural network
【24h】

Adaptive detection of small sinusoidal signals in non-Gaussian noise using an RBF neural network

机译:使用RBF神经网络自适应检测非高斯噪声中的小正弦信号

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the application of locally optimum (LO) signal detection techniques to environments in which the noise density is not known a priori. For small signal levels, the LO detection rule is shown to involve a nonlinearity which depends on the noise density. The estimation of the noise density is a major part of the computational burden of LO detection rules. In this paper, adaptive estimation of the noise density is implemented using a radial basis function neural network. Unlike existing algorithms, the present technique places few assumptions on the properties of the noise, and performs well under a wide variety of circumstances. Experimental results are shown which illustrate the system performance as a variety of noise densities are encountered.
机译:本文介绍了局部优化(LO)信号检测技术在先验未知噪声密度的环境中的应用。对于小信号电平,LO检测规则显示为涉及非线性,该非线性取决于噪声密度。噪声密度的估计是LO检测规则的计算负担的主要部分。在本文中,使用径向基函数神经网络来实现噪声密度的自适应估计。与现有算法不同,本技术很少对噪声的性质进行假设,并且在各种情况下都能很好地执行。显示了实验结果,这些结果说明了遇到各种噪声密度时的系统性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号