首页> 外文期刊>IEEE Transactions on Neural Networks >Limitations of neural networks for solving traveling salesman problems
【24h】

Limitations of neural networks for solving traveling salesman problems

机译:神经网络解决旅行商问题的局限性

获取原文
获取原文并翻译 | 示例

摘要

Feedback neural networks enjoy considerable popularity as a means of approximately solving combinatorial optimization problems. It is now well established how to map problems onto networks so that invalid solutions are never found. It is not as clear how the networks' solutions compare in terms of quality with those obtained using other optimization techniques; such issues are addressed in this paper. A linearized analysis of annealed network dynamics allows a prototypical network solution to be identified in a pertinent eigenvector basis. It is possible to predict the likely quality of this solution by examining optimal solutions in the same basis. Applying this methodology to traveling salesman problems, it appears that neural networks are well suited to the solution of Euclidean but not random problems; this is confirmed by extensive experiments. The failure of a network to adequately solve even 10-city problems is highly significant.
机译:反馈神经网络作为近似解决组合优化问题的一种手段而享有很高的知名度。现在已经很好地确定了如何将问题映射到网络上,从而永远不会找到无效的解决方案。目前尚不清楚网络解决方案在质量上与使用其他优化技术获得的解决方案相比如何;这些问题在本文中得到解决。退火网络动力学的线性分析允许在相关特征向量的基础上确定原型网络解决方案。通过在相同的基础上检查最佳解决方案,可以预测此解决方案的可能质量。将这种方法应用于旅行商问题,似乎神经网络非常适合欧几里得的求解,但不适用于随机问题。大量实验证实了这一点。网络无法充分解决甚至10个城市的问题,这一点非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号