首页> 外文期刊>IEEE Transactions on Neural Networks >Learning capacity and sample complexity on expert networks
【24h】

Learning capacity and sample complexity on expert networks

机译:专家网络的学习能力和样本复杂性

获取原文
获取原文并翻译 | 示例

摘要

A major development in knowledge-based neural networks is the integration of symbolic expert rule-based knowledge into neural networks, resulting in so-called rule-based neural (or connectionist) networks. An expert network here refers to a particular construct in which the uncertainty management model of symbolic expert systems is mapped into the activation function of the neural network. This paper addresses a yet-to-be-answered question: Why can expert networks generalize more effectively from a finite number of training instances than multilayered perceptrons? It formally shows that expert networks reduce generalization dimensionality and require relatively small sample sizes for correct generalization.
机译:基于知识的神经网络的一个重大发展是将符号专家基于规则的知识集成到神经网络中,从而形成了所谓的基于规则的神经(或连接主义)网络。这里的专家网络是指一种特殊的构造,其中将符号专家系统的不确定性管理模型映射到神经网络的激活函数中。本文提出了一个尚待解答的问题:为什么专家网络在有限数量的训练实例中比多层感知器更有效地进行概括?它正式表明专家网络降低了归纳维数,并且需要相对较小的样本量才能正确归纳。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号