首页> 外文会议>Computational intelligence for knowledge-based systems design >An Importance Sampling Approach to Integrate Expert Knowledge When Learning Bayesian Networks From Data
【24h】

An Importance Sampling Approach to Integrate Expert Knowledge When Learning Bayesian Networks From Data

机译:从数据学习贝叶斯网络时整合专家知识的重要性抽样方法

获取原文
获取原文并翻译 | 示例

摘要

The introduction of expert knowledge when learning Bayesian Networks from data is known to be an excellent approach to boost the performance of automatic learning methods, specially when the data is scarce. Previous approaches for this problem based on Bayesian statistics introduce the expert knowledge modifying the prior probability distributions. In this study, we propose a new methodology based on Monte Carlo simulation which starts with non-informative priors and requires knowledge from the expert a posteriori, when the simulation ends. We also explore a new Importance Sampling method for Monte Carlo simulation and the definition of new non-informative priors for the structure of the network. All these approaches are experimentally validated with five standard Bayesian networks.
机译:从数据学习贝叶斯网络时引入专家知识是提高自动学习方法性能的一种极好的方法,特别是在数据稀缺时。基于贝叶斯统计的针对该问题的先前方法引入了修改先验概率分布的专家知识。在这项研究中,我们提出了一种基于蒙特卡洛模拟的新方法,该方法以非信息先验开始,并且在模拟结束时需要后代专家的知识。我们还探索了用于蒙特卡洛模拟的一种新的重要性抽样方法,以及网络结构的新的非信息先验的定义。所有这些方法均通过五个标准贝叶斯网络进行了实验验证。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号