首页> 外文期刊>IEEE Transactions on Neural Networks >A neural network-based model for paper currency recognition and verification
【24h】

A neural network-based model for paper currency recognition and verification

机译:基于神经网络的纸币识别和验证模型

获取原文
获取原文并翻译 | 示例

摘要

This paper describes the neural-based recognition and verification techniques used in a banknote machine, recently implemented for accepting paper currency of different countries. The perception mechanism is based on low-cost optoelectronic devices which produce a signal associated with the light refracted by the banknotes. The classification and verification steps are carried out by a society of multilayer perceptrons whose operation is properly scheduled by an external controlling algorithm, which guarantees real-time implementation on a standard microcontroller-based platform. The verification relies mainly on the property of autoassociators to generate closed separation surfaces in the pattern space. The experimental results are very interesting, particularly when considering that the recognition and verification steps are based on low-cost sensors.
机译:本文介绍了最近被实现用于接受不同国家的纸币的纸币机中基于神经的识别和验证技术。感知机制基于低成本的光电设备,该设备会产生与钞票折射的光相关的信号。分类和验证步骤由多层感知器社团执行,其操作由外部控制算法适当安排,从而保证了在基于标准微控制器的平台上的实时实现。验证主要取决于自动关联器的属性,以在图案空间中生成闭合的分离表面。实验结果非常有趣,特别是当考虑到识别和验证步骤基于低成本传感器时。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号