首页> 外文期刊>IEEE Transactions on Neural Networks >Recognition and pose estimation of unoccluded three-dimensional objects from a two-dimensional perspective view by banks of neural networks
【24h】

Recognition and pose estimation of unoccluded three-dimensional objects from a two-dimensional perspective view by banks of neural networks

机译:神经网络库从二维透视图识别和遮挡三维物体的姿势

获取原文
获取原文并翻译 | 示例

摘要

This paper describes a neural network (NN) based system for recognition and pose estimation of an unoccluded three-dimensional (3-D) object from any single two-dimensional (2-D) perspective view. The approach is invariant to translation, orientation, and scale. First, the binary silhouette of the object is obtained and normalized for translation and scale. Then, the object is represented by a set of rotation invariant features derived from the complex orthogonal pseudo-Zernike moments of the image. The recognition scheme combines the decisions of a bank of multilayer perceptron NN classifiers operating in parallel on the same data. These classifiers have different topologies and internal parameters, but are trained on the same set of exemplar perspective views of the objects. Next, two pose parameters, elevation and aspect angles, are obtained by a novel two-stage NN system consisting of a quadrant classifier followed by NN angle estimators. Performance is tested on clean and noisy data bases of military ground vehicles. Comparative studies with three other classifiers (a single NN, the weighted nearest-neighbor classifier, and a binary decision tree) are carried out.
机译:本文介绍了一种基于神经网络(NN)的系统,该系统用于从任何单个二维(2-D)透视图识别和遮挡不受影响的三维(3-D)对象。该方法对于平移,方向和比例不变。首先,获得对象的二进制轮廓并将其标准化以进行平移和缩放。然后,该对象由一组旋转不变特征表示,这些特征从图像的复数正交伪Zernike矩导出。识别方案结合了对相同数据并行运行的一组多层感知器NN分类器的决策。这些分类器具有不同的拓扑和内部参数,但是在对象的同一组示例透视图上进行训练。接下来,通过新颖的两阶段NN系统获得两个姿态参数,仰角和长宽角,该系统由象限分类器和NN角估计器组成。性能已在军用地面车辆的干净且嘈杂的数据库上进行了测试。与其他三个分类器(单个NN,加权最近邻分类器和二元决策树)进行了比较研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号