首页> 外文期刊>IEEE Transactions on Neural Networks >A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures
【24h】

A fast multilayer neural-network training algorithm based on the layer-by-layer optimizing procedures

机译:基于逐层优化程序的快速多层神经网络训练算法

获取原文
获取原文并翻译 | 示例

摘要

A faster new learning algorithm to adjust the weights of the multilayer feedforward neural network is proposed. In this new algorithm, the weight matrix (W/sub 2/) of the output layer and the output vector (Y) of the previous layer are treated as two variable sets. An optimal solution pair (W/sub 2/*,Y/sub P/*) is found to minimize the sum-square-error of the patterns input. Y/sub P/* is then used as the desired output of the previous layer. The optimal weight matrix and layer output vector of the hidden layers in the network is found with the same method as that used for the output layer. In addition, the dynamic forgetting factors method makes the proposed new algorithm even more powerful in dynamic system identification. Computer simulation shows that the new algorithm outmatches other learning algorithms both in converging speed and in computation time required.
机译:提出了一种新的快速学习算法,用于调整多层前馈神经网络的权重。在这种新算法中,输出层的权重矩阵(W / sub 2 /)和前一层的输出向量(Y)被视为两个变量集。找到最佳解决方案对(W / sub 2 / *,Y / sub P / *),以最小化模式输入的和误差。然后,将Y / sub P / *用作上一层的所需输出。用与用于输出层的方法相同的方法找到网络中隐藏层的最佳权重矩阵和层输出向量。此外,动态遗忘因子方法使所提出的新算法在动态系统识别中更加强大。计算机仿真表明,新算法在收敛速度和所需的计算时间上均优于其他学习算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号