首页> 外文期刊>IEEE Transactions on Neural Networks >Reinforcement learning for an ART-based fuzzy adaptive learning control network
【24h】

Reinforcement learning for an ART-based fuzzy adaptive learning control network

机译:基于ART的模糊自适应学习控制网络的强化学习

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a reinforcement fuzzy adaptive learning control network (RFALCON), constructed by integrating two fuzzy adaptive learning control networks (FALCON), each of which has a feedforward multilayer network and is developed for the realization of a fuzzy controller. One FALCON performs as a critic network (fuzzy predictor), the other as an action network (fuzzy controller). Using temporal difference prediction, the critic network can predict the external reinforcement signal and provide a more informative internal reinforcement signal to the action network. The action network performs a stochastic exploratory algorithm to adapt itself according to the internal reinforcement signal. An ART-based reinforcement structure/parameter-learning algorithm is developed for constructing the RFALCON dynamically. During the learning process, structure and parameter learning are performed simultaneously. RFALCON can construct a fuzzy control system through a reward/penalty signal. It has two important features; it reduces the combinatorial demands of system adaptive linearization, and it is highly autonomous.
机译:本文提出了一种增强型模糊自适应学习控制网络(RFALCON),它是通过将两个模糊自适应学习控制网络(FALCON)集成在一起而构建的,每个模糊自适应学习控制网络均具有前馈多层网络,并且是为实现模糊控制器而开发的。一个FALCON充当批评者网络(模糊预测器),另一个充当行动网络(模糊控制器)。使用时间差异预测,批判者网络可以预测外部增强信号,并向动作网络提供更多信息的内部增强信号。动作网络执行随机探索算法,以根据内部增强信号进行自适应。提出了一种基于ART的加固结构/参数学习算法,用于动态构造RFALCON。在学习过程中,结构和参数学习同时进行。 RFALCON可以通过奖惩信号构建模糊控制系统。它具有两个重要特征;它降低了系统自适应线性化的组合需求,并且具有高度自治性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号