首页> 外文期刊>IEEE Transactions on Neural Networks >Reliable roll force prediction in cold mill using multiple neural networks
【24h】

Reliable roll force prediction in cold mill using multiple neural networks

机译:使用多个神经网络的冷轧机可靠轧制力预测

获取原文
获取原文并翻译 | 示例

摘要

The cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. The accurate prediction of roll force is essential for product quality. Currently, a suboptimal mathematical model is used. We trained two multilayer perceptrons, one to directly predict the roll force and the other to compute a corrective coefficient to be multiplied to the prediction made by the mathematical model. Both networks were shown to improve the accuracy by 30-50%. Combining the two networks and the mathematical model results in systems with an improved reliability.
机译:钢铁厂的冷轧机工艺使用轧机机架将带钢压扁至所需厚度。轧制力的准确预测对于产品质量至关重要。当前,使用了次优的数学模型。我们训练了两个多层感知器,一个感知器直接预测侧倾力,另一个感知器计算校正系数,以与数学模型的预测相乘。这两个网络均显示出将精度提高30-50%的效果。将两个网络和数学模型结合起来,可以提高系统的可靠性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号