首页> 外文期刊>Applied Mathematical Modelling >Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process
【24h】

Application of artificial neural networks for the prediction of roll force and roll torque in hot strip rolling process

机译:人工神经网络在热轧带钢轧制力和轧制扭矩预测中的应用

获取原文
获取原文并翻译 | 示例

摘要

This paper introduces an artificial neural network (ANN) application to a hot strip mill to improve the model's prediction ability for rolling force and rolling torque, as a function of various process parameters. To obtain a data basis for training and validation of the neural network, numerous three dimensional finite element simulations were carried out for different sets of process variables. Experimental data were compared with the finite element predictions to verify the model accuracy. The input variables are selected to be rolling speed, percentage of thickness reduction, initial temperature of the strip and friction coefficient in the contact area. A comprehensive analysis of the prediction errors of roll force and roll torque made by the ANN is presented. Model responses analysis is also conducted to enhance the understanding of the behavior of the NN model. The resulted ANN model is feasible for on-line control and rolling schedule optimization, and can be easily extended to cover different aluminum grades and strip sizes in a straight-forward way by generating the corresponding training data from a FE model.
机译:本文介绍了一种人工神经网络(ANN)在热轧机上的应用,以提高该模型对轧制力和轧制扭矩的预测能力,作为各种工艺参数的函数。为了获得训练和验证神经网络的数据基础,对不同的过程变量集进行了许多三维有限元模拟。将实验数据与有限元预测值进行比较,以验证模型的准确性。选择输入变量为轧制速度,厚度减少的百分比,带材的初始温度和接触区域的摩擦系数。综合分析了人工神经网络对轧制力和轧制扭矩的预测误差。还进行了模型响应分析,以增强对NN模型行为的理解。所得的ANN模型对于在线控制和轧制计划优化是可行的,并且可以通过从FE模型中生成相应的训练数据,以简单的方式轻松地扩展到涵盖不同的铝种和带材尺寸。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号