首页> 外文期刊>IEEE Transactions on Neural Networks >A class of neural networks for independent component analysis
【24h】

A class of neural networks for independent component analysis

机译:一类用于独立成分分析的神经网络

获取原文
获取原文并翻译 | 示例

摘要

Independent component analysis (ICA) is a recently developed, useful extension of standard principal component analysis (PCA). The ICA model is utilized mainly in blind separation of unknown source signals from their linear mixtures. In this application only the source signals which correspond to the coefficients of the ICA expansion are of interest. In this paper, we propose neural structures related to multilayer feedforward networks for performing complete ICA. The basic ICA network consists of whitening, separation, and basis vector estimation layers. It can be used for both blind source separation and estimation of the basis vectors of ICA. We consider learning algorithms for each layer, and modify our previous nonlinear PCA type algorithms so that their separation capabilities are greatly improved. The proposed class of networks yields good results in test examples with both artificial and real-world data.
机译:独立成分分析(ICA)是标准主成分分析(PCA)的最新开发,有用的扩展。 ICA模型主要用于未知来源信号与其线性混合的盲分离。在本申请中,仅关注与ICA扩展的系数相对应的源信号。在本文中,我们提出了与多层前馈网络相关的神经结构,以执行完整的ICA。基本的ICA网络由白化,分离和基本矢量估计层组成。它可用于盲源分离和ICA基向量的估计。我们考虑针对每一层的学习算法,并修改我们以前的非线性PCA类型算法,以便大大提高其分离能力。所提出的网络类别在包含人工数据和真实数据的测试示例中均产生良好的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号