首页> 外文期刊>IEEE Transactions on Neural Networks >Topology preservation in self-organizing feature maps: exact definition and measurement
【24h】

Topology preservation in self-organizing feature maps: exact definition and measurement

机译:自组织特征图中的拓扑保留:精确的定义和测量

获取原文
获取原文并翻译 | 示例

摘要

The neighborhood preservation of self-organizing feature maps like the Kohonen map is an important property which is exploited in many applications. However, if a dimensional conflict arises this property is lost. Various qualitative and quantitative approaches are known for measuring the degree of topology preservation. They are based on using the locations of the synaptic weight vectors. These approaches, however, may fail in case of nonlinear data manifolds. To overcome this problem, in this paper we present an approach which uses what we call the induced receptive fields for determining the degree of topology preservation. We first introduce a precise definition of topology preservation and then propose a tool for measuring it, the topographic function. The topographic function vanishes if and only if the map is topology preserving. We demonstrate the power of this tool for various examples of data manifolds.
机译:自组织特征图(例如Kohonen贴图)的邻域保存是一项重要属性,已在许多应用程序中得到利用。但是,如果发生尺寸冲突,则会丢失此属性。已知各种定性和定量方法用于测量拓扑保存的程度。它们基于使用突触权重向量的位置。但是,在非线性数据流形的情况下,这些方法可能会失败。为了克服这个问题,在本文中,我们提出了一种方法,该方法使用所谓的感应场来确定拓扑保留的程度。我们首先介绍了拓扑保留的精确定义,然后提出了一种测量拓扑的工具,即地形功能。当且仅当地图保留拓扑时,地形功能才消失。我们演示了该工具在数据流形的各种示例中的强大功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号