首页> 外文期刊>IEEE Transactions on Neural Networks >Modified self-organizing feature map algorithms for efficient digital hardware implementation
【24h】

Modified self-organizing feature map algorithms for efficient digital hardware implementation

机译:修改后的自组织特征图算法,可有效实现数字硬件

获取原文
获取原文并翻译 | 示例

摘要

This paper describes two variants of the Kohonen's self-organizing feature map (SOFM) algorithm. Both variants update the weights only after presentation of a group of input vectors. In contrast, in the original algorithm the weights are updated after presentation of every input vector. The main advantage of these variants is to make available a finer grain of parallelism, for implementation on machines with a very large number of processors, without compromising the desired properties of the algorithm. In this work it is proved that, for one-dimensional (1-D) maps and 1-D continuous input and weight spaces, the strictly increasing or decreasing weight configuration forms an absorbing class in both variants, exactly as in the original algorithm. Ordering of the maps and convergence to asymptotic values are also proved, again confirming the theoretical results obtained for the original algorithm. Simulations of a real-world application using two-dimensional (2-D) maps on 12-D speech data are presented to back up the theoretical results and show that the performance of one of the variants is in all respects almost as good as the original algorithm. Finally, the practical utility of the finer parallelism made available is confirmed by the description of a massively parallel hardware system that makes effective use of the best variant.
机译:本文介绍了Kohonen自组织特征图(SOFM)算法的两个变体。两种变体仅在呈现一组输入矢量后才更新权重。相反,在原始算法中,权重在呈现每个输入矢量后进行更新。这些变体的主要优点是在不影响算法所需性能的情况下,可以在具有大量处理器的计算机上实现更好的并行度。在这项工作中,证明了对于一维(1-D)映射以及一维连续输入和权重空间,严格增加或减少权重配置会在两个变体中形成一个吸收类,与原始算法完全相同。还证明了映射的顺序和渐近值的收敛性,再次证实了原始算法获得的理论结果。提出了在12维语音数据上使用二维(2-D)映射对实际应用程序进行的仿真,以支持理论结果,并表明,这些变体之一的性能在各个方面都几乎与标准变体的性能相同。原始算法。最后,通过对有效利用最佳变体的大规模并行硬件系统的描述,证实了更精细的并行性的实用性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号