首页> 外文期刊>IEEE Transactions on Neural Networks >Neural-network classifiers for recognizing totally unconstrained handwritten numerals
【24h】

Neural-network classifiers for recognizing totally unconstrained handwritten numerals

机译:神经网络分类器,用于识别完全不受约束的手写数字

获取原文
获取原文并翻译 | 示例

摘要

Artificial neural networks have been recognized as a powerful tool for pattern classification problems, but a number of researchers have also suggested that straightforward neural-network approaches to pattern recognition are largely inadequate for difficult problems such as handwritten numeral recognition. In this paper, we present three sophisticated neural-network classifiers to solve complex pattern recognition problems: multiple multilayer perceptron (MLP) classifier, hidden Markov model (HMM)/MLP hybrid classifier, and structure-adaptive self-organizing map (SOM) classifier. In order to verify the superiority of the proposed classifiers, experiments were performed with the unconstrained handwritten numeral database of Concordia University, Montreal, Canada. The three methods have produced 97.35%, 96.55%, and 96.05% of the recognition rates, respectively, which are better than those of several previous methods reported in the literature on the same database.
机译:人工神经网络已被认为是解决模式分类问题的有力工具,但是许多研究人员还提出,直接的神经网络方法来进行模式识别在很大程度上难以解决诸如手写数字识别之类的难题。在本文中,我们提出了三种用于解决复杂模式识别问题的复杂神经网络分类器:多层感知器(MLP)分类器,隐马尔可夫模型(HMM)/ MLP混合分类器以及结构自适应自组织映射(SOM)分类器。为了验证所提出的分类器的优越性,使用加拿大蒙特利尔康考迪亚大学的无约束手写数字数据库进行了实验。三种方法分别产生了97.35%,96.55%和96.05%的识别率,这比文献中在同一数据库上报道的几种先前方法的识别率要好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号