首页> 外文期刊>IEEE Transactions on Neural Networks >Fuzzy neural networks for classification and detection of anomalies
【24h】

Fuzzy neural networks for classification and detection of anomalies

机译:模糊神经网络用于异常分类和检测

获取原文
获取原文并翻译 | 示例

摘要

A new learning algorithm for the Simpson fuzzy min-max neural network is presented. It overcomes some undesired properties of the Simpson model. Our new algorithm improves the network performance; the classification result does not depend on the presentation order of the patterns in the training set, and at each step, the classification error in the training set cannot increase. The new neural model is particularly useful in classification problems. Tests were executed on three different classification problems: 1) with two-dimensional synthetic data; 2) with realistic data generated by a simulator to find anomalies in the cooling system of a blast furnace; and 3) with real data for industrial diagnosis. The experiments were made following some recent evaluation criteria known in the literature and by using Microsoft Visual C++ development environment on personal computers.
机译:提出了一种新的辛普森模糊最小-最大神经网络学习算法。它克服了辛普森模型的某些不良特性。我们的新算法提高了网络性能;分类结果不取决于训练集中模式的显示顺序,并且在每个步骤中,训练集中的分类误差都不会增加。新的神经模型在分类问题中特别有用。针对三个不同的分类问题执行了测试:1)具有二维综合数据; 2)用模拟器生成的实际数据来查找高炉冷却系统中的异常; 3)具有用于工业诊断的真实数据。根据文献中已知的一些最新评估标准并通过在个人计算机上使用Microsoft Visual C ++开发环境进行实验。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号