首页> 外文期刊>IEEE Transactions on Neural Networks >Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design
【24h】

Recurrent neural-network training by a learning automaton approach for trajectory learning and control system design

机译:基于学习自动机的递归神经网络训练,用于轨迹学习和控制系统设计

获取原文
获取原文并翻译 | 示例

摘要

We present a training approach using concepts from the theory of stochastic learning automata that eliminates the need for computation of gradients. This approach also offers the flexibility of tailoring a number of specific training algorithms based on the selection of linear and nonlinear reinforcement rules for updating automaton action probabilities. The training efficiency is demonstrated by application to two complex temporal learning scenarios, viz, learning of time-dependent continuous trajectories and feedback controller designs for continuous dynamical plants. For the first problem, it is shown that training algorithms can be tailored following the present approach for a recurrent neural net to learn to generate a benchmark circular trajectory more accurately than possible with existing gradient-based training procedures. For the second problem, it is shown that recurrent neural-network-based feedback controllers can be trained for different control objectives.
机译:我们提出一种使用随机学习自动机理论中的概念的训练方法,该方法无需计算梯度。这种方法还提供了基于线性和非线性增强规则的选择来定制许多特定训练算法的灵活性,以更新自动机动作概率。通过将其应用于两个复杂的时间学习场景(即,时间相关的连续轨迹的学习和连续动力植物的反馈控制器设计),证明了训练效率。对于第一个问题,表明可以按照本方法针对循环神经网络定制训练算法,以学习比现有的基于梯度的训练过程更准确地生成基准圆形轨迹的方法。对于第二个问题,表明可以为不同的控制目标训练基于递归神经网络的反馈控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号