首页> 外文期刊>IEEE Transactions on Neural Networks >Support vector machines for histogram-based image classification
【24h】

Support vector machines for histogram-based image classification

机译:支持向量机用于基于直方图的图像分类

获取原文
获取原文并翻译 | 示例

摘要

Traditional classification approaches generalize poorly on image classification tasks, because of the high dimensionality of the feature space. This paper shows that support vector machines (SVM) can generalize well on difficult image classification problems where the only features are high dimensional histograms. Heavy-tailed RBF kernels of the form K(x, y)=e/sup -/spl rho///spl Sigma//sub i//sup |xia-yia|b/ with a /spl les/1 and b/spl les/2 are evaluated on the classification of images extracted from the Corel stock photo collection and shown to far outperform traditional polynomial or Gaussian radial basis function (RBF) kernels. Moreover, we observed that a simple remapping of the input x/sub i//spl rarr/x/sub i//sup a/ improves the performance of linear SVM to such an extend that it makes them, for this problem, a valid alternative to RBF kernels.
机译:由于特征空间的高维性,传统的分类方法在图像分类任务上的概括性很差。本文表明,支持向量机(SVM)可以很好地概括那些仅以高维直方图为特征的困难图像分类问题。形式为K(x,y)= e / sup-/ spl rho /// spl Sigma // sub i // sup | xia-yia | b /的重尾RBF内核,带有/ spl les / 1和b / spl les / 2是根据从Corel图片集提取的图像分类进行评估的,其性能远远优于传统的多项式或高斯径向基函数(RBF)内核。此外,我们观察到,对输入x / sub i // spl rarr / x / sub i // sup a /的简单重新映射将线性SVM的性能提高到一定程度,从而使它们对于该问题成为有效的替代RBF内核。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号