首页> 外文期刊>IEEE Transactions on Neural Networks >Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM)
【24h】

Handwritten digit recognition by adaptive-subspace self-organizing map (ASSOM)

机译:自适应子空间自组织图(ASSOM)的手写数字识别

获取原文
获取原文并翻译 | 示例

摘要

The adaptive-subspace self-organizing map (ASSOM) proposed by Kohonen is a recent development in self-organizing map (SOM) computation. In this paper, we propose a method to realize ASSOM using a neural learning algorithm in nonlinear autoencoder networks. Our method has the advantage of numerical stability. We have applied our ASSOM model to build a modular classification system for handwritten digit recognition. Ten ASSOM modules are used to capture different features in the ten classes of digits. When a test digit is presented to all the modules, each module provides a reconstructed pattern and the system outputs a class label by comparing the ten reconstruction errors. Our experiments show promising results. For relatively small size modules, the classification accuracy reaches 99.3% on the training set and over 97% on the testing set.
机译:Kohonen提出的自适应子空间自组织图(ASSOM)是自组织图(SOM)计算的最新进展。本文提出了一种在非线性自动编码器网络中使用神经学习算法实现ASSOM的方法。我们的方法具有数值稳定性的优点。我们已将ASSOM模型应用于构建用于手写数字识别的模块化分类系统。十个ASSOM模块用于捕获十个数字类别中的不同功能。当将测试数字提供给所有模块时,每个模块都会提供一个重构模式,并且系统会通过比较十个重构错误来输出类别标签。我们的实验显示出令人鼓舞的结果。对于尺寸相对较小的模块,训练集的分类精度达到99.3%,测试集的分类精度达到97%以上。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号