首页> 外文期刊>IEEE Transactions on Neural Networks >Training multilayer perceptron classifiers based on a modified support vector method
【24h】

Training multilayer perceptron classifiers based on a modified support vector method

机译:基于改进支持向量法的多层感知器分类器训练

获取原文
获取原文并翻译 | 示例

摘要

In this paper we describe a training method for one hidden layer multilayer perceptron classifier which is based on the idea of support vector machines (SVM). An upper bound on the Vapnik-Chervonenkis (VC) dimension is iteratively minimized over the interconnection matrix of the hidden layer and its bias vector. The output weights are determined according to the support vector method, but without making use of the classifier form which is related to Mercer's condition. The method is illustrated on a two-spiral classification problem.
机译:在本文中,我们基于支持向量机(SVM)的思想描述了一种用于隐藏层多层感知器分类器的训练方法。 Vapnik-Chervonenkis(VC)维度的上限在隐藏层及其偏置矢量的互连矩阵上迭代最小化。根据支持向量法确定输出权重,但不使用与美世条件有关的分类器形式。在两个螺旋分类问题上说明了该方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号