首页> 外文期刊>IEEE Transactions on Neural Networks >Fast and robust fixed-point algorithms for independent component analysis
【24h】

Fast and robust fixed-point algorithms for independent component analysis

机译:快速,强大的定点算法,用于独立成分分析

获取原文
获取原文并翻译 | 示例

摘要

Independent component analysis (ICA) is a statistical method for transforming an observed multidimensional random vector into components that are statistically as independent from each other as possible. We use a combination of two different approaches for linear ICA: Comon's information theoretic approach and the projection pursuit approach. Using maximum entropy approximations of differential entropy, we introduce a family of new contrast functions for ICA. These contrast functions enable both the estimation of the whole decomposition by minimizing mutual information, and estimation of individual independent components as projection pursuit directions. The statistical properties of the estimators based on such contrast functions are analyzed under the assumption of the linear mixture model, and it is shown how to choose contrast functions that are robust and/or of minimum variance. Finally, we introduce simple fixed-point algorithms for practical optimization of the contrast functions.
机译:独立成分分析(ICA)是一种统计方法,用于将观察到的多维随机向量转换为统计上彼此尽可能独立的成分。对于线性ICA,我们使用两种不同方法的组合:Comon的信息理论方法和投影追踪方法。使用微分熵的最大熵近似,我们为ICA引入了一系列新的对比函数。这些对比函数既可以通过最小化互信息来估计整个分解,也可以估计作为投影追踪方向的各个独立分量。在线性混合模型的假设下,分析了基于这种对比函数的估计量的统计特性,并说明了如何选择健壮和/或最小方差的对比函数。最后,我们介绍了用于对比度函数实际优化的简单定点算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号