首页> 外文期刊>IEEE Transactions on Neural Networks >Face recognition using the nearest feature line method
【24h】

Face recognition using the nearest feature line method

机译:使用最近的特征线方法进行人脸识别

获取原文
获取原文并翻译 | 示例

摘要

We propose a classification method, called the nearest feature line (NFL), for face recognition. Any two feature points of the same class (person) are generalized by the feature line (FL) passing through the two points. The derived FL can capture more variations of face images than the original points and thus expands the capacity of the available database. The classification is based on the nearest distance from the query feature point to each FL. With a combined face database, the NFL error rate is about 43.7-65.4% of that of the standard eigenface method. Moreover, the NFL achieves the lowest error rate reported to date for the ORL face database.
机译:我们提出了一种分类方法,称为最近特征线(NFL),用于人脸识别。穿过这两个点的要素线(FL)可以概括同一类(人)的任何两个特征点。与原始点相比,派生的FL可以捕获更多的面部图像变化,从而扩展了可用数据库的容量。分类基于从查询特征点到每个FL的最近距离。使用组合人脸数据库,NFL的错误率约为标准特征脸方法的43.7-65.4%。此外,NFL实现了迄今为止针对ORL人脸数据库报告的最低错误率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号